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M A T E R I A L S  S C I E N C E

SINGLE: Atomic-resolution structure identification 
of nanocrystals by graphene liquid cell EM
Cyril F. Reboul1,2*, Junyoung Heo3,4*, Chiara Machello1,2, Simon Kiesewetter1,2, Byung Hyo Kim3,4,5, 
Sungin Kim3,4, Dominika Elmlund1,2, Peter Ercius6, Jungwon Park3,4†, Hans Elmlund1,2†

Analysis of the three-dimensional (3D) structures of nanocrystals with solution-phase transmission electron 
microscopy is beginning to reveal their unique physiochemical properties. We developed a “one-particle Brownian 
3D reconstruction method” based on imaging of ensembles of colloidal nanocrystals using graphene liquid cell 
electron microscopy. Projection images of differently rotated nanocrystals are acquired using a direct electron 
detector with high temporal (<2.5 ms) resolution and analyzed to obtain an ensemble of 3D reconstructions. Here, 
we introduce computational methods required for successful atomic-resolution 3D reconstruction: (i) tracking of the 
individual particles throughout the time series, (ii) subtraction of the interfering background of the graphene liquid 
cell, (iii) identification and rejection of low-quality images, and (iv) tailored strategies for 2D/3D alignment and 
averaging that differ from those used in biological cryo–electron microscopy. Our developments are made available 
through the open-source software package SINGLE.

INTRODUCTION
The sustained advances by the crystallographic community over the 
past 50 years have transformed our understanding of chemistry and 
biology (1). However, numerous targets, including solubilized nano-
crystals of fundamental importance to chemical catalysis, remain 
intractable to traditional crystallographic methods. Colloidal nano-
crystals containing a few tens to hundreds of atoms have applications 
in an ever-expanding range of areas, from electronics to catalysis 
and biological sensors (2). This versatility stems from the high sen-
sitivity of nanocrystal properties to size, chemical composition, and 
shape, which are largely determined by the synthesis route by which 
they are produced (3, 4). The structural characteristics of nanocrystals 
are commonly estimated by a simplistic scale-down picture of the 
corresponding bulk materials. However, this attempt generally fails 
because of the unique structural characteristics emerging at the 
nanoscale. Exposed surfaces, defects, dislocations, and quantum ef-
fects are dominant in nanocrystals of finite size (5). The ensemble of 
nanocrystals produced from conventional colloidal synthesis displays 
a large degree of heterogeneity in the atomic structures, despite the 
development of synthetic protocols for stringent control of size and 
morphology (6). In addition, the effects of organic ligands and sol-
vent molecules need to be accounted for, since they are important 
determinants for the surface structures of colloidal nanocrystals 
(7, 8). Thus, understanding the structures of nanocrystals at a level 
where fundamental structure-property relationships can be linked 
requires new analysis methods that allow precise and reproducible 

determination of the positions of the constituent atoms of single 
nanocrystals directly from the solution phase.

In typical single-particle three-dimensional (3D) reconstruction, 
primarily used in structural biology of protein molecules, the molecu-
lar Coulomb charge density is reconstructed from tens of thousands 
projection images of different views of the molecule. The unknown 
3D projection angles of the images are determined by sophisticated 
computational methods (9–14). Over the past few years, the emergence 
of a next generation of electron microscopes, with improvement of 
direct electron detectors, and improved algorithms for image analysis 
have enabled routine determination of the 3D structures of biologi-
cal molecules by cryo–electron microscopy (cryo-EM). In favorable 
cases, it is now possible to determine near-atomic resolution (<4 Å) 
structures of biomolecules below 100 kDa (15) and solve sub-2-Å- 
resolution structures of larger macromolecules (16). However, in 
situ 3D reconstruction of solubilized individual nanocrystals is an 
emerging methodology in its early stages of development. We devel-
oped SINGLE—a methodology based on independent 3D recon-
struction of time series high- resolution transmission EM (HRTEM) 
images obtained for individual nanocrystals undergoing Brownian 
motion. SINGLE is the only method developed to date capable of 
resolving the 3D atomic structures of heterogeneous nanocrystals 
directly from the solution phase. We here introduce new preprocess-
ing methods for improving the signal-to-noise ratio (SNR) versus 
the individual movie frames, tracking the particle trajectories, re-
moving graphene-induced background signal, and excluding out-of-
focus images. These improved computational methods are required 
for successful 3D reconstruction from in situ graphene liquid cell 
(GLC) TEM data. The results presented herein demonstrate the 
applicability of the SINGLE to obtain atomic-resolution 3D recon-
structions of nanocrystals dispersed in solution—samples that would 
be impossible to image and/or interrogate by any other method.

RESULTS
Overview of SINGLE
The SINGLE suite implements all steps required for obtaining an 
ensemble of atomic-resolution 3D reconstructions from time series 
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GLC-EM data of colloidal metallic nanocrystals produced by distinct 
synthesis routes. Figure 1 provides a schematic overview of SINGLE. 
The SINGLE workflow is divided into two major steps: (i) prepro-
cessing and (ii) particle 3D reconstruction. The preprocessing step 
operates on the movie frames of the time series. Each movie frame 
represents a 2D projection of several particles in random orientations. 
The following particle 3D reconstruction step operates on individual 
particle trajectories, each consisting of a set of differently projected 
views of a unique nanocrystal. We aim at providing the highest pos-
sible performance and efficiency on any CPU hardware, from super-
computers to workstations or even laptops. The SINGLE source code, 
as well as a large amount of introductory, tutorial, installation, usage, 
reference, and developer information, is available at simplecryoem.
com. SINGLE is free software distributed under the GNU general 
public license, either version 3 of the license, or (at your option) any 
later version. The public git repository is available at https://github.
com/hael/SIMPLE3.0.git.

The SINGLE workflow
First, time-window averaging over several frames with anisotropic 
motion correction is conducted, which improves the SNR versus 
the individual frames, leading to visible particles and substantially 
enhanced graphene signal in the power spectrum. Next, particle po-
sitions are manually identified in the first time window average, and 
these starting coordinates are inputted to the tracker. Following 
tracking, graphene background subtraction is done. Subsequently, 
time-restrained 2D clustering and in-plane registration are applied 
to identify the centers of mass of the particle views and remove the 
frames corresponding to the contiguous time segments where the 
particle has moved out of the narrow depth of focus of the aberra-
tion corrected TEM. Next, a starting model is generated on the basis 
of the expected crystallographic structure, particle diameter, and 
constituent elements. Last, 3D reconstructions are produced, atomic 

coordinates are fitted, and atomic-scale structure analyses, such as 
strain mapping, are performed.

Time-window averaging with anisotropic motion correction
In 2015, we published near-atomic resolution 3D reconstructions of 
two individual nanocrystals, obtained by combining GLC-EM with 
a method for ab initio single-particle 3D reconstruction for solving 
the inverse problem of recovering the unknown 3D orientations of 
the individual noisy nanocrystal projections (17). In that study, we 
had to apply moving window averaging over five consecutive movie 
frames to improve the SNR to a level that allowed successful 3D re-
construction. Since the nanocrystals are imaged rotating freely in 
liquid at ambient temperature, moving time-window averaging rep-
resents a potent risk for incoherent averaging and resolution loss. In 
our 2020 study (18), we improved the time-window averaging by 
including isotropic motion correction to account for stage drift. 
Furthermore, we included correlation-based frame weights to mar-
ginalize the influence of the flanking frames in the time window that 
often agreed poorly with the average due to motion of the nanocrystals, 
motion of the liquid, and deformation of the two graphene layers. 
To further correct for resolution loss due to anisotropic (beam- 
induced) motion, we here introduce weighted time-window averaging 
using an elastic deformation model to represent the beam-induced 
motions, as previously described (19).

Tracking of the individual particles throughout  
the time series
Our previous attempts at developing a method for tracking were 
based on correlating neighboring, systematically shifted windows in 
the time series. This worked well for a few particle trajectories, but 
the failure rate was too high (17, 18). Here, we introduce a new tracking 
method based on translational registration of nonoverlapping time 
windows (30 frames by default) using fast Fourier transforms 

Fig. 1. Overall workflow of SINGLE. Overall workflow and descriptions of each step of SINGLE are shown. SINGLE consists of two major steps: Preprocessing of the time 
series (orange), including (i) time-window frame averaging with anisotropic motion correction and (ii) tracking particle trajectory with using total variation (TV)–based 
denoising, and particle 3D reconstruction from individual particle trajectories (blue), including (i) graphene background identification and subtraction, (ii) time-restrained 
2D clustering with exclusion of out-of-focus images, (iii) initial model generation, and (iv) 3D reconstruction and atomic-scale structure analysis.
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(FFTs) and the phase correlation method in conjunction with inter-
polation of a quadratic function to identify a correlation maximum 
with subpixel accuracy (20). The extracted time windows are denoised 
using total variation (TV)–based denoising (21) and masked with a 
soft-edged spherical mask before obtaining shifts through iterative 
registration between the average over the time window, parameter-
ized with respect to the shifts, and the individual particle views. TV 
denoising is based on the principle that noisy signals have high TV, 
i.e., the integral of the absolute gradient of the signal is high. Denoising 
is achieved through reducing this variation in a manner that pre-
serves edges and structural features. We tested this algorithm on our 
previously published datasets (17, 18). The combined use of denoising 
and time-averaging provided a robust method that enabled efficient 
tracking of the motion of the individual nanocrystals throughout 
the movie. Figure 2 shows the tracking trajectories for two repre-
sentative nanocrystals, which could not be successfully reconstructed 
using our previous approach. Despite the inherent movement of the 
nanocrystals, sometimes bringing them out of the depth of focus, 
and the strong solvent background, the overall shape of the nano-
crystal and/or crystalline features remain discernible, attesting to 
the robustness of the tracking algorithm. Notably, we were able to 
recover previously challenging trajectories and obtain their 3D re-
constructions [see Fig. 2 (A and B) and fig. S1].

Graphene background subtraction
In comparison to conventional materials science TEM, where atomic 
resolution can be achieved through a single exposure of a thin elec-
tron transparent material, images of nanocrystals in a GLC have 
comparably low SNR due to the strong background introduced by 
the solvent and graphene of the liquid cell. In our two previous 
studies (17, 18), the background of the GLC was modeled on the 
basis of the eight averages over the eight nearest neighbors of the 
particle image. The background subtraction was validated for each 
of the eight averages by inspecting the average power spectrum after 
subtraction and selecting the one with least pronounced graphene 
peaks. This worked well for a few particle trajectories. However, in 
many instances, honeycomb-like lattices showed up in the recon-
structed 3D densities due to graphene bias. Through careful com-
parison of experimental and simulated particle trajectories, it became 
clear that the background is best modeled by two graphene sheets, 
rotated with respect to one another. Here, we introduce an auto-
mated Fourier filtration method for removing these peaks, preserving 
as much as possible of the information content related to the parti-
cle itself. Graphene subtraction is repeated as follows for each individual 
view of the particle trajectory (see Fig. 3A for schematic): 1)For each 
individual view, obtain the rotational average of the power spectrum 
over its eight nearest neighbors, each containing GLC background 
signal. Rotational averaging is performed over 60°, as constrained 
by the reciprocal hexagonal lattice of graphene, to reduce the influ-
ence of signals related to the particle and the solvent. 2)Calculate the 
rotational correlations of the generated spectrum with that of a the-
oretical graphene sheet. To further minimize the effect of noise and 
residual solvent background only the most prominent graphene 
resolution bands are included in this calculation (~2.1, 1.2, and 
1.1 Å). The correlation profile unambiguously distinguishes two 
sets of correlation peaks corresponding to two graphene layers and 
identifies the location of the Fourier components to remove. 3)Mask 
away both sets of graphene peaks in the particle Fourier transform 
using a smooth polynomial function that is zero at each determined 

peak position and approaches one within less than three Fourier 
pixels. The background-subtracted particle trajectory is used in all 
subsequent image processing steps.

We found this automated procedure efficiently removes the 
graphene bias in the 3D reconstructions as well as in the time-restrained 
class averages (see Fig. 3B). For different nanocrystal particle trajec-
tories, the average relative rotations between the two graphene sheets 
and the standard deviations are not identical. This indicates that 
there are spatiotemporal variations in the GLC architecture, possibly 
due to corrugation of the graphene sheets forming the liquid pockets 
and the presence of multiple domains in the graphene sheets. Hence, 
it is necessary to model the graphene background on the level of the 
individual views of the particle trajectories.

Time-restrained 2D clustering and in-plane registration
Visual inspection of the images and power spectra of the time series 
data processed in our previous two studies (17, 18) indicated that 
the orientation change during the image acquisition is not homo-
geneous. Orientation changes are rapid and often accompanied by 
a vertical movement in the solution that brings the nanocrystal out 
of the narrow depth of focus of the aberration-corrected TEM. 

Fig. 2. Tracking of individual nanocrystal trajectories. Tracking results of parti-
cle 1 (A and B) and 2 (C and D) throughout the movie (blue to red). Representative 
time averages of raw unaligned particle images (50 frames) are shown (B and D). 
Scale bars, 1 nm.
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Rotation of nanocrystals compartmentalized by a GLC is likely 
affected by the vertical confinement and interactions between the 
GLC and the passivating organic ligands. Here, we characterize the 
nature of the nanocrystal rotations in the highly confined space of 
the GLC by mapping the angular distance between neighboring 
views of a previously reconstructed particle trajectory (see Fig. 4A). 
Measuring the angular distance between neighboring views is a 
nontrivial problem, since the 3D reconstruction algorithm is prob-
abilistic, i.e., one particle view is assigned a distribution of projection 
directions with weights (10, 22). Therefore, we use a greedy algo-
rithm to derive a lower bound of the rotational change by measuring 
the angular distance between the two closest projection directions 
of the neighboring distributions. The angular change plot for one of 
our previously reconstructed particles [referred to as particle 1  in 
our previous paper (18)] shows that changes in projection direction 
do not occur continuously between each frame within the 2.5-ms 

interval and include discrete stochastic events. Substantial (>5°) 
changes in projection direction occur in less than 10% of all frames. 
Furthermore, the rate of rotational change is higher in the beginning 
of the series and decreases toward the end, presumably due to drying 
of the solvent during the prolonged TEM imaging. Since rotational 
diffusion depends on the dimension of the embedding solution in 
the GLC, the orientation coverage for nanoparticles with different 
sizes and compositions can be manipulated by controlling the 
encapsulated volume of the liquid, the frame rate, and the electron 
dose rate. Our method for quantifying the changes in projection 
direction will be helpful for these kinds of analyses. The high degree 
of correlation between neighboring particle views along the time 
series explains why time-window averaging in conjunction with 
motion correction can be used so effectively to improve the SNR 
versus the individual frames. In previous single-particle cryo-EM 
studies, we have shown that 2D analysis can be a rapid and powerful 

Fig. 3. Schematic depiction of the graphene subtraction procedure. (A) Graphene peak identification and subtraction. An average background spectrum is obtained 
from the eight nearest neighboring images of the GLC. Rotational averaging (increments of 60°) emphasizes the apparent signals of the reciprocal hexagonal lattices of 
the two graphene layers. Rotational correlations calculated between the averaged experimental (red) and theoretical graphene spectra (green) unequivocally identify the 
location of the graphene peaks of each layer (indicated orange and blue). The graphene peaks are subsequently masked out in the particle Fourier transform. (B) Repre-
sentative class averages and their FFT images before and after graphene background subtraction.
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tool for obtaining SNR-enhanced class averages in an unsupervised 
manner (23, 24). However, the method used for single-particle 
cryo-EM images, where there is no correlation between views along 
a trajectory in time, relies on combinatorial optimization through 
stochastic hill climbing with random initialization. This advanced 
method is not needed for the simpler task of analyzing nanocrystal 
particle trajectories. We therefore designed an algorithm where ini-
tialization is done in a time-dependent manner through defining 
the size of a window in time (35 frames by default) and creating 
mutually exclusive classes along the time dimension (see Fig. 4B). 
Figure 4C and its inset shows the relationship between frame order 
and assigned classes. The class boundaries are refined deterministi-
cally and iteratively by correlating each nanocrystal view with its 
current, preceding and succeeding class along the time trajectory, 
while maximizing the correlation over the three in-plane degrees of 
freedom. This deterministic approach thus operates in a substan-
tially reduced search space and improves the accuracy of the cluster, 
rotation, and shift parameters obtained, ultimately improving the 
SNR versus the individual frames (see Fig. 4D).

Particle diameter estimation
The diameter of the particle is estimated from the class averages 
obtained as described above. A 2D version of Otsu’s algorithm (25) 
is applied to distinguish between foreground and background pixels 

in the class averages. The longest distance between any two fore-
ground pixels represents the diameter of the class average. The minimum 
of all class average diameters is taken as an estimate of the 3D parti-
cle diameter, assuming approximately spherical shape. In the case of 
nonspherical particles, we have found that the minimum diameter 
provides a better estimate of the diameter for starting model gen-
eration than for example the average or median diameter, because 
views along the smaller dimension tend to be better centered.

Starting model generation
The 2D projection images of the particle trajectories have a large 
degree of translational symmetry due to the high degree of crystal-
linity in the nanocrystal core. This explains why the reconstruction 
of an initial ab initio 3D density (as it is typically done in cryo-EM) 
often fails. The interfering background signal is also a contributing 
factor. Therefore, we developed a starting model estimation proce-
dure that uses the knowledge that the particles have an approximately 
cubic atomic position arrangement with bond lengths similar to the 
bulk material. A starting model is estimated on the basis of the lat-
tice configuration expected from the bulk material, using the cubic 
crystal system (primitive cubic, body-centered cubic, or face-centered 
cubic). The atomic coordinates of the lattice are used to fill the volume 
from the center and out to the estimated diameter. Next, atomic 
densities are simulated as described by Rullgård et al. (26), using 

Fig. 4. Time-restrained 2D clustering. (A) Fraction of angular change throughout the time series. Red dashed line is the trend line. Projection directions are changing 
rapidly in the regions between frames 1500 to 1600 (orange), frames 3800 to 3900 (green), and frames 5600 to 5700 (blue). Insets are plots depicting angular difference 
in projection direction in those regions. (B) Schematic depiction of time-restrained 2D class averaging. (C) Plot showing allocated classes for individual frames in the 1 to 
400 region. Inset is plot showing allocated classes over all frames. (D) Class averages obtained with time-restrained 2D clustering and alignment.
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5-Gaussian atomic scattering factors (27). 2D reprojections of this 
simulated 3D density represent well the character of the projections 
in the core of the nanocrystal and overcome the issues related to 
translational symmetry and interfering background signal.

3D reconstruction
The 3D refinement method used in biological cryo-EM cannot 
straightforwardly be applied to time series data of nanocrystals. 
Critical modifications had to be introduced.

• The Fourier shell correlation (FSC)–based estimation of the 
SNR and associated matched filter, as implemented for cryo-EM 
images (10, 11), does not work for GLC-EM nanocrystal time series 
due to inflated resolution estimations in the early stages. Low-pass 
limited refinement is used instead, with a resolution limit that al-
lows the atomic signals to participate in the projection matching 
(~1.5 Å) from the start. Contrary to protein molecules, low-resolution 
information of the nanocrystals does not convey the shape inform-
ation necessary for convergence. Low-frequency information is also 
largely absent in the movies due to the image formation character-
istics of the aberration-corrected HRTEM setup.

• It is not possible to use probabilistic, i.e., weighted, assignment 
of the in-plane rotations and origin shifts due to the high degree of 
translational symmetry of the nanocrystal 2D projections. Deter-
ministic assignment of in-plane degrees of freedom is used instead.

In addition to these modifications, we use the starting model 
estimation procedure outlined above to provide an initial 3D refer-
ence. Furthermore, we use a two-stage refinement scheme, where a 
low-pass limit of 1.5 Å is typically used for the first 10 iterations to 
establish the correct shape of the nanocrystal and the following 10 to 
20 iterations are low-pass limited to 1 Å to allow the atoms and 
their shapes to drive the 3D alignment. 3D density maps and corre-
sponding atomic maps obtained using our new developments are 
shown in Fig. 5. Three nanocrystals of different sizes, which were 
not successfully reconstructed before, were selected for benchmarking 
(see fig. S1). 3D maps, fitted atomic maps, and radial strain maps 
are shown in Fig. 5 (A to C). Microscopic structural details at atomic 
level can be analyzed by using the atomic maps produced with our 
method. All interatomic distances along the <111>, <100>, and < 110> 
directions can be measured and plotted (see Fig. 5D). The plot shows 
marginal expansion of lattice parameters, which is consistent with 
previous results (18). Particle size versus lattice parameter expansion 
is plotted in Fig. 5E. Adding three additional data points obtained 
from this study to our previously reported results (18) establishes a 
weak negative correlation between nanocrystal size and lattice pa-
rameter expansion. Detailed strain analysis (Fig. 5F) and unit cell 
structure analysis (Fig. 5G) are also possible using the atomic maps 
generated with our method.

Validation of the 3D reconstructions
We previously demonstrated that our stochastic 3D reconstruction 
algorithm is robust to initial model bias (22), which is less of a con-
cern for this kind of images that have much higher SNR than cryo-
EM images. We generated a model of a disordered nanocrystal by 
molecular dynamics simulation to assess whether SINGLE is appli-
cable to highly disordered nanocrystals. The simulated disordered 
particle has a twin plane and disorder in multiple atomic positions. 
In the multislice simulations, we applied translational motion and 
random defocus variations (±5 nm) to represent realistic particle 
motion. The 3D density map of the disordered nanocrystal obtained 

from 5000 simulated images with SNR = 0.1 and a starting model 
with perfect crystalline order agreed excellently with the original 
particle (see Fig. 6A), demonstrating that the reconstruction algo-
rithm is robust to initial model bias. Furthermore, the fact that the 
refined 3D reconstructions obtained from experimental data show 
facets, structural degeneracies, lattice parameter deviations, internal 
defects, and strain (18) that are absent in the starting volumes are 
strong evidence that the final maps are correct (see Fig. 6B). The 
correlation between reprojections of the map and the experimental 
images was plotted versus iteration. The plot shows that the starting 
model fits the data poorly but nevertheless provides a good starting 
3D registration, as indicated by the massive jump in correlation in 
the first few iterations (see Fig. 6C).

The standard validation techniques used in cryo-EM [gold-standard 
FSC (28) and tilt-pair validation (29)] are not applicable because of 
the nature of the GLC-EM nanocrystal time series data and the 3D 
reconstruction approach used. The most important validation step 
is to ensure that the reprojections of the final map agree with the 
views of the particle trajectory. This comparison is made difficult by 
the strong GLC solvent background signal, causing the individual 
particle views to have low SNR compared to the corresponding re-
projections of the 3D reconstruction. Therefore, we developed a 
validation method that uses the time-restrained 2D class averages 
that have high SNRs—well suited for visual inspection—and importantly 
were generated independently of any 3D model. Our validation pro-
cedure works as follows: the converged 3D reconstruction is used as 
a starting point for five iterations of 3D refinement using the time- 
restrained class averages. The resulting validation 3D map obtained 
using the class averages provides the opportunity to compare repro-
jections with class averages that have substantially higher SNR than 
the individual nanocrystal views (see Fig. 6D).

To quantify the degree of similarity between the validation 3D 
reconstruction obtained from class averages and the final 3D map 
obtained using the individual views of the particle trajectories, we 
calculated the real space correlation between the map pairs, result-
ing in correlations of better than 0.9. As expected, the smallest 
nanocrystal (particle 2) with the highest degree of disorder and the 
least favorable accumulative SNR (fewest particles included) gave 
rise to the lowest-quality 3D reconstruction. Nevertheless, the re-
projections of the validation 3D reconstruction agreed excellently 
with the class averages for particle 2 (see Fig. 6D, second panel), and 
we see no reason to dismiss its atomic structure. More careful in-
spection of class averages versus reprojections revealed that the only 
substantial discrepancies occurred at the surface of the nanocrystals. 
This is likely due to dynamic effects confined to the solvent accessible 
surface and can be explained by the fact that the class averages cap-
ture the particle in a restricted window in time, whereas the repro-
jections are generated using a 3D reconstruction obtained through 
averaging over the entire time series. Resolving this kind of surface 
localized dynamic effects will be the subject of our future studies.

Distribution of the projection directions of the rotating nano-
crystals is important for the validity and quality of the 3D recon-
struction. Production of 3D maps with high resolution and precision 
requires sufficient coverage of projection directions. To inspect the 
distribution of the projection directions assigned by the 3D recon-
struction process, we created an atomic representation in which each 
atomic position represents a projection direction colored according 
to time (see Fig. 6E). If the same projection direction is sampled 
multiple times, it receives the color of the latest direction. Particles 
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1 and 3 had the best projection direction coverage. Particle 2 showed 
the most random distribution of projection directions. Analyzing 
the projection direction distribution can also help understanding 
nanocrystal rotation in GLC. Particles 1, 2, and 3 showed evidence 
of precession, i.e., change in the orientation of the rotational axis of 
the rotating nanocrystal, because the projection directions tended 
to cluster in ring patterns. How the actual atomic structures of the 
nanocrystals affect the rotational dynamics will require further 
study and analysis of many more particle trajectories. However, our 
results indicate that the larger the nanocrystal, the more restricted 
its rotations, presumably because the rotational dynamics of larger 
particles are more influenced by the GLC confinement.

DISCUSSION
In conclusion, we have demonstrated that the computational methods 
in SINGLE can be used to obtain atomic-resolution nanocrystal 
density maps. Currently, our 3D reconstruction algorithm assumes 
that the individual views of the particle trajectory conform to the 
projection-slice theorem (30). A valid concern, given this assump-
tion, is that diffraction contrast and/or multiple scattering may in-
troduce artefacts when reconstructing large particles. We previously 
demonstrated that Pt nanocrystals of up to 4 nm in diameter can be 
successfully reconstructed (18). 3D reconstruction of larger nano-
crystals (>4 nm) would be more challenging due to their slower 
rotation rate, causing poor rotational coverage. We also previously 

Fig. 5. 3D reconstruction results and atomic level structure analysis. (A to C) 3D density maps (A), radial strain maps from fitted atomic coordinates (B), and their slice 
representation (C). (D) Interatomic distances in the directions of <110> (red), <100> (black), and < 111> (blue) for three nanocrystals. (E) Fitted lattice parameters of pre-
viously reported nanocrystals (18) (gray squares) and new results (red stars). (F) Histogram of radial strain of all atoms (top), core atoms (middle), surface atoms (bottom) 
of particle 3. (G) Unit cell structure of core (red), middle (green), and surface (blue) of particle 3. Scale bars, 1 nm.
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demonstrated through 3D reconstruction of multislice simulated 
images of Ag and Ni (a light-element transition metal) nanocrystals 
that SINGLE is widely applicable to nanocrystals with homogeneous 
atomic composition (18). Using an advanced liquid cell configura-
tion, such as a GLC with ordered nanochambers allowing control of 
the liquid thickness (31, 32), would extend the applicability of SINGLE 
since the liquid thickness is an important factor for efficient data 
acquisition (fig. S2). In conclusion, the SINGLE suite we introduce 
in this study along with GLC-EM of colloidal nanocrystals provides 
an efficient analytical platform to understand the structural origin 

of the unique physical and chemical properties of nanocrystals in 
their native solution phase.

MATERIALS AND METHODS
Synthesis of Pt nanocrystals
Pt nanocrystals of 2 to 3 nm in diameter were synthesized by mixing 
0.05 mmol (NH4)2Pt(II)Cl4 (99.995%; Sigma-Aldrich), 0.75 mmol 
tetramethylammonium bromide (98%; Sigma-Aldrich), 1 mmol of 
polyvinylpyrrolidone (M.W. 29,000; Sigma-Aldrich), and 10 ml of 
ethylene glycol in a three-neck round bottom flask. The mixture was 
heated to 160°C and kept at 160°C for 20 min. After cooling the 
solution to room temperature, 90 ml of acetone was added to pre-
cipitate the particles. The product was centrifuged at 4000 rpm for 
5 min. The supernatant was discarded, and the Pt nanocrystals were 
redispersed in 5 mM Hepes buffer solution with pH 7.4.

Preparation of GLCs
Graphene was synthesized on 25-m-thick copper foil (99.8%; Alfa 
Aesar) by the chemical vapor deposition method. The copper foil in 
a quartz tube was heated to 1000°C for 30 min in hydrogen environ-
ment. Graphene was grown onto the copper foil with flows of 25 cm3/
min of methane and 10 cm3/min of hydrogen at 1000°C. After 20 min, 
the product was rapidly cooled to room temperature with methane 
flow. Graphene TEM grids were prepared by transferring the graphene 
to a holey carbon grid using the direct transfer method. The graphene 
covered copper foil was treated with weak oxygen plasma to etch 
the graphene on one side of the foil. A Quantifoil grid (Ted Pella) 
was placed onto the other grid side, on which graphene was not etched. 
Next, the copper foil substrate was etched with ammonium persulfate 
aqueous solution (0.1 g/ml). The graphene grid was washed with 
deionized water several times. The GLC was fabricated with two 
graphene grids. Pt nanocrystal solution (0.5 l) was loaded onto a 
graphene grid. The other graphene grid was gently laid on the 
graphene grid with the liquid sample, so that the liquid sample was 
sandwiched between the two graphene sheets. Sealing of the liquid 
sample is accomplished through the strong interaction between the 
two graphene surfaces.

Acquisition of TEM images
TEM movies of Pt nanocrystals in the GLC were obtained at a rate 
of 400 frames per second using TEAM I, an FEI Titan 80/300 TEM 
equipped with a postspecimen geometric- and chromatic-aberration 
corrector and a Gatan K2 IS direct electron detector. Thousands of 
images with 1920 × 1728 pixels and 0.358 Å pixel resolution were 
acquired at a dose rate of ~17 e−/pixel·frame or below at an acceler-
ation voltage of 300 kV. The pixel size was confirmed on the basis of 
the known lattice spacing of the graphene sheets containing the 
nanocrystals. TEM images of rotating nanocrystals were used in the 
3D reconstruction process. Successful 3D reconstruction of nanoparticles 
that differ in size, composition, and solvating molecules requires ex-
tensive optimization of imaging conditions, image processing, and 
reconstruction parameters. TEM imaging conditions must be opti-
mized to obtain good SNR of the 2D projected lattice for a given 
rotational rate, local thickness of the liquid, and image capture rate.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/7/5/eabe6679/DC1

Fig. 6. Validation of 3D reconstructions. (A) 3D reconstruction of simulated 
disordered particle with known atomic structure. Left: Model of a disordered nano-
crystal obtained by molecular dynamics simulation. Middle: 5000 multislice simu-
lated images with noise added to give a SNR = 0.1. Right: Atomic map (red) as result 
of 3D reconstruction overlaid with the ground truth model (gray). (B) Starting 3D 
models and final 3D density maps obtained from experimental data. (C) Correlation 
between reprojections of the refined 3D density map and the experimental particle 
views plotted as a function of iteration for the first stage of 3D refinement. Particles 
presented in this paper (black, red, and blue color) and presented in a previous study 
(18) (green, purple, and ocher color) are plotted. (D) Comparison of class averages 
(indicated as projection) with reprojections for validation of the three structures. 
(E) Time-dependent atomic representation of the projection directions for the three 
structures: white (beginning) to pink (middle) to red (end). Red, yellow, and blue 
arrows indicate x, y, and z axes, respectively.
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